How cooperative are protein folding and unfolding transitions?

نویسندگان

  • Pooja Malhotra
  • Jayant B Udgaonkar
چکیده

A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategy for obtaining non-native protein cross-reactions

Most single-domain proteins show cooperative unfolding transitions at equilibrium: the cooperativity of protein folding makes it difficult to populate non-native protein structures [1,2]. Nevertheless, protein folding intermediates are known to exist [1,2] and alternative protein conformations have been demonstrated by numerous methods [2-41. A long-standing problem is how to populate non-nativ...

متن کامل

Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli.

The monomeric D-glucose/D-galactose-binding protein (GGBP) from Escherichia coli (M(r) 33000) is a periplasmic protein that serves as a high-affinity receptor for the active transport and chemotaxis towards both sugars. The effect of D-glucose binding on the thermal unfolding of the GGBP protein at pH 7.0 has been measured by differential scanning calorimetry (DSC), far-UV CD and intrinsic tryp...

متن کامل

Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding.

The N-terminal domain, residues 1-56, of the ribosomal protein L9 has been chemically synthesized. The isolated domain is monomeric as judged by analytical ultracentrifugation and concentration-dependent CD. Complete 1H chemical shift assignments were obtained using standard methods. 2D-NMR experiments show that the isolated domain adopts the same structure as seen in the full-length protein. I...

متن کامل

Precursory signatures of protein folding/unfolding: from time series correlation analysis to atomistic mechanisms.

Folded conformations of proteins in thermodynamically stable states have long lifetimes. Before it folds into a stable conformation, or after unfolding from a stable conformation, the protein will generally stray from one random conformation to another leading thus to rapid fluctuations. Brief structural changes therefore occur before folding and unfolding events. These short-lived movements ar...

متن کامل

Predicting the energetics of osmolyte-induced protein folding/unfolding.

A primary thermodynamic goal in protein biochemistry is to attain predictive understanding of the detailed energetic changes that are responsible for folding/unfolding. Through use of recently determined free energies of side-chain and backbone transfer from water to osmolytes and Tanford's transfer model, we demonstrate that the long-sought goal of predicting solvent-dependent cooperative prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 2016